FFT-Methode nach Vorbild
Corona-Infektionsrisiko prüfen
Mangelt es an belastbaren Daten zum Eintreffen spezifischer Ereignisse oder an Wissen über Entscheidungskonsequenzen, liegt ein Problem der Unsicherheit vor. Bessere Entscheidungen können dabei kaum durch den geübten Umgang mit Statistiken oder ihre transparente Kommunikation erreicht werden. Stattdessen ist die zentrale Fragestellung, wie der einzelne Verbraucher die Unsicherheit in seiner Entscheidungssituation reduzieren kann. Hierbei sind zwei Szenarien zentral:
Wie kann Unsicherheit für Problemstellungen alltagstauglich (schnell, praktisch) reduziert werden, bei denen der Verbraucher auf sich allein gestellt ist?
Wie kann Unsicherheit für Problemstellungen alltagstauglich (schnell, praktisch) reduziert werden, bei denen ein Experte dem Verbraucher Rat gibt?
Warum ist es schwierig, Entscheidungsunterstützung bei Problemen der Unsicherheit zu geben?
Entscheidungsprobleme der Unsicherheit zeichnen sich durch einen Mangel an belastbaren Daten aus. Dadurch ist eine direkte Auswahl der besten Entscheidungsoption im Grunde ausgeschlossen. Die Unterstützung besteht darin, entscheidende Strategien zu kennen, um Unsicherheit zu reduzieren. Was muss ich fragen, um die Auswahl möglicher Informationen bzw. Optionen zu reduzieren? Wonach muss ich suchen? Was muss ich prüfen, um unpassende Optionen auszusortieren, welche die Mindestanforderungen nicht erfüllen?
Im Gegensatz zu Verbrauchern sind Experten in einem bestimmten Fachgebiet in der Lage, anhand weniger heuristischer Merkmale objektive Standardunterschreitungen bei einem Entscheidungsproblem zu identifizieren. Mithilfe einer Analyse von konkreten Entscheidungssituationen von Verbrauchern werden mögliche Expertenheuristiken in Entscheidungsbäume destilliert. Diese fassen das auf Erfahrung basierte Bauchgefühl der Experten zusammen und leihen dem Verbraucher eine robuste Expertise, mit der er, dem Experten ähnlich, die Spreu vom Weizen zu trennen vermag.
Dies ist nicht nur für Fragestellungen bedeutsam, bei denen Verbraucher auf sich allein gestellt sind. Auch für Beratungssituationen lassen sich mögliche Entscheidungsheuristiken in Entscheidungsbäumen kombinieren: Hier geht es darum, dem Berater die wichtigsten Fragen zu stellen, um diese Situation robust einschätzen zu können.
Geeignete Entscheidungsbäume, die transparent, für Verbraucher nachvollziehbar und zugleich von hoher Güte sein können, sind die Fast-and-Frugal Trees (FFTs). Diese FFTs stellen eine Abfolge von zu prüfenden Merkmalen dar (Martignon et al., 2008). Es gibt immer nur eine Abzweigung (Stopp) oder man kommt zum nächsten Prüfmerkmal, aber es gibt keine weiteren Verzweigungen (s.u. das Themenbeispiel). Dies unterscheidet die FFTs von üblichen Entscheidungsbäumen. Erst beim letzten Merkmal in der Kette gibt es zwei Abzweigungen.
Es wurde gezeigt, dass FFTs in verschiedensten Entscheidungssituationen unter Unsicherheit schnelle und zuverlässige Entscheidungen ermöglichen, u.a. in der Psychiatrie, in der Anästhesiologie, aber auch in der Finanzwelt (Aikman et al., 2014; Green & Mehr, 1997; Jenny et al., 2013). FFTs lassen sich in Form einer grafisch aufgearbeiteten, einfachen Baumstruktur sowohl digital (z.B. App, Internetseite) als auch analog zu den Verbrauchern bringen (z.B. auf Postern oder in Broschüren). Somit sind sie ein evidenzbasiertes Instrument zur Entscheidungsunterstützung, das einfach zu implementieren ist. Im RisikoAtlas-Projekt wurde es erstmals für die alltägliche Verbraucherpraxis entwickelt und umgesetzt. Der Einsatz der FFTs ist zudem lebensdienlich, da ihre Benutzung Fähigkeiten trainiert. Die Verwendung der FFTs erleichtert das Verinnerlichen von Schlüsselmerkmalen für Problemstellungen und regt kritisches Denken an.
Die Reihenfolge der Merkmale in einem FFT ist kritisch und muss aufwendig im Vorhinein ermittelt werden. Hierbei sind manuelle, aber auch komplexere Ansätze mithilfe der Methoden des maschinellen Lernens vorhanden. Einmal statistisch ermittelt, ermöglicht diese Merkmalskombination einem Verbraucher, Entscheidungsoptionen robust zu klassifizieren (z.B. dahingehend, ob eine informierte Entscheidung ermöglicht wird), indem er die Ausprägung der Merkmale eigenständig überprüft.
- Aikman, D., Galesic, M., Gigerenzer, G., Kapadia, S., Katsikopoulos, K. V., Kothiyal, A., ... & Neumann, T. (2014). Taking uncertainty seriously: Simplicity versus complexity in financial regulation. Bank of England Financial Stability Paper, 28.
- Banerjee, S., Chua, A. Y., & Kim, J. J. (2017). Don't be deceived: Using linguistic analysis to learn how to discern online review authenticity. Journal of the Association for Information Science and Technology, 68(6), 1525–1538.
- Green, L., & Mehr, D. R. (1997). What alters physicians' decisions to admit to the coronary care unit?. Journal of Family Practice, 45(3), 219–226.
- Jablonskis, E., & Czienskowski, U. (2017). Decision trees online. http://www.adaptivetoolbox.net/Library/Trees/TreesHome#/
- Jenny, M. A., Pachur, T., Williams, S. L., Becker, E., & Margraf, J. (2013). Simple rules for detecting depression. Journal of Applied Research in Memory and Cognition, 2(3), 149–157.
- Luan, S., Schooler, L. J., & Gigerenzer, G. (2011). A signal-detection analysis of fast-and-frugal trees. Psychological Review, 118(2), 316.
- Martignon, L., Katsikopoulos, K. V., & Woike, J. K. (2008). Categorization with limited resources: A family of simple heuristics. Journal of Mathematical Psychology, 52(6), 352–361.
Wenn Sie ein Verbraucherthema von unserer Internetseite übernehmen möchten, können Sie das über die folgenden drei Wege tun:
- Sie verwenden eine digitale Kopie. Entweder Sie speichern sich direkt eine Grafik bzw. laden unser PDF herunter oder Sie binden die Grafik mittels Link(a href) oder iframe ein.
- Sie ziehen Ihre analoge Kopie und drucken sich unser PDF aus. Die Auflösung bzw. die vektorbasierte Grafik ist für Poster und Broschüren geeignet.
- Sie empfehlen die App und verweisen auf den Risikokompass aus PlayStore und AppStore.
Wenn Sie ein eigenes Modell entwickeln möchten, konsultieren Sie bitte den Abschlussbericht zum RisikoAtlas-Projekt ab Juli 2020 oder richten Sie eine Anfrage an uns.Die Kontaktdaten finden Sie im Reiter Kontakt.
Wir bitten darum, bei der Nutzung der Instrumente den Zuwendungsgeber, das Bundesministerium der Justiz und für Verbraucherschutz, sowie das Harding-Zentrum für Risikokompetenz als verantwortliche Entwickler zu erwähnen.
Die Logos zum Download finden Sie hier.
Woher stammen die Daten?
Das Modell basiert auf einer Darstellung von Zeit.de und auf Basis von Informationen vom Robert-Koch-Institut sowie dem Bundesministerium der Gesundheit.
Datum der letzten Aktualisierung: 26. März 2020.